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WEAK ASYMPTOTICS OF THE BAYES ESTIMATOR
OF THE RELIABILITY FUNCTION
IN THE KOZIOL-GREEN MODEL

MICHAL FRIESL

ABSTRACT. The Bayesian estimator (assuming conjugate prior density) of the
reliability function in the Koziol-Green model with exponential distribution is
considered, and the weak convergence of the estimator process to the Gaussian
process in C[0, oo] is proved.

1. INTRODUCTION

We are dealing with the Koziol-Green model of random censorship with an expo-
nential distribution, the model, which is described in many reliability and survival
data literature. We continue the works [3] and [4], where Bayesian estimators and
above all their asymptotic properties and Bayesian risk are studied. [6] deals with
the asymptotic properties of the maximum likelihood estimator, in [5] a test of fit
with the Koziol-Green model is given. A review of models and methods of estimation
is found in [7].

Let us have two independent random samples: X1, Xo, ..., X, (failure times) dis-
tributed Exp(\) (A > 0), the exponential distribution with the reliability function

Rt)y=e,  t>0,

and T1,T5,...,T, (time censors) distributed Exp(Ay) (v > 0). The reliability
function of T equals R” and satisfies thus the assumption of the Koziol-Green
model — to be a power of that of X. Instead of v we can consider the parameter

p=1+v)""
Due to the censoring by 7}’s, the information available is fully contained in

W; =min(X;,T;)  and  I; = xx,<7]-
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If we denote the total time of an experiment and the number of uncensored items
by

W:ZWj and I:ZIj,
j=1 j=1
the likelihood function for the parameters of the model, A and -, can be written as

Ly W) = Ate AW an=I = x5 0 4 > 0.

We choose a prior density
k ()\ ,y) _ Lﬂ)\r—ks—l e—>\(1+7) ,Ys—l Y ~y >0
a,r,s 9 F(T)F(S) ) Y Y

from the natural conjugate system for L, K = {kq s, @,7,s > 0}. Then the Baye-
sian estimators of \ and R(t) are

I+r — ( W +a )”r

and RO = e

respectively.
Given A, 7, the convergences

X2 V(=N % N(0, A2 /p)

and
1) Vi (R(1) = B(1)) ~2 N (0, (R(O) In R(1))*/p)

—_

are proved in [4]. In this paper we will consider R(t) and R(t) as the trajectories of
continuous processes R and R and extend (1) to the process /n(R — R).

2. WEAK CONVERGENCE OF R

Lemma. Let U(t) = (I +7r)In(1 +t/(a+ W)) — At. Then

2) Ve MU(t) —2— Z(t) in C([0, o)),

n—oo

where Z is a zero mean Gaussian process with cov(Z(s), Z(t)) = ste st \2/p,

Proof. We use Taylor expansion of In(1 + x) at x = 0 to express

¢ ¢
In (1 - ¢
n< +W+a) Wira @)

where

(3) Q:1(t) = —2(1i§)2 (Wt—{—a) for some &(t) € [0,t/(W + a)].
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Since

_ 1o 5 T+7r)Vn (I+71)v/n
( ) ’\/ﬁe ( +T)Q1( )‘ -9 e (W—i—a)2 — (W—i—a)2 N 50
where K > 0 is a constant depending on A only, both

I+ I+r
/ _ —At . _ —At _
U'(t)=+vne (W+ t At) te \/E(WHL A)

and /ne MU(t) = U'(t) + v/ne M(I + 7)Q1(t) converge to equally distributed
processes.

We know that /n[(I +7)/(W + a) — \] = N(0, A2 /p) in distribution as n — oo
and hence for every tq,%s,...,tr > 0 finite-dimensional distributions

>0 a.s.,

U't), ..., U (tr)) HLOJ N (0, var(Z(t1), ..., Z(t))).

Let £ > 0 be given.

P sup [U/(t) — U'(s)] > ] = P[ sup [re™ —s -*SM\

[s—t|<é |s—t| <6

I+

SECE

I+r

PS5Vt |77 )\’ > el —— 20 (M;f/ﬁ) :

where @ is the distribution function of N(O, 1). We can conclude that
lim limsupP| sup |U'(t) —U'(s)|>¢] =0

0—=04+ n—oo |s—t|<5
(Stone’s tightness condition). Thus we have the convergence (2) in C([0,7]) for
every T' > 0 (e. g. [8], Theorem IIL.5.7, or [1], Chapter 8). The extension to C'([0, cc])
can be made through the condition on tightness at co (based on [1], Theorem 4.2,
an example of application [2], Theorem 6.2.1) which reads
lim hmsupP[sup \U'(t) —U'(s)| >¢e] =0 for every € > 0,

§—=0 poo

and this is satisfied here since

1
Ploup re ™ 5 ‘“!\F‘ R EEE
t>s
<Plse™ Vi | I+T > ] , 20 —c
n—oo0 se_)‘s)\/\/z_) ’
assuming s > 1/\. O

Proposition. For the Bayesian estimator R(t) = (intit)”?” of the reliability

function R(t) = e~ we have

Vi(R—R) —2— Z in C(]0,]),

n—oo

where Z is a zero mean Gaussian process with cov(Z(s), Z(t)) = ste= 5+ \2/p,
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Proof. Using Taylor expansion of e” at x = 0 we obtain

(5)  V(R(t) = R(t)) = Ve (e " —1) = Ve M1 - U(t) + Qa(t) — 1),

Qa(t) = £ U2(t)/2  for some £(t) between 0 and —U(t).
Let 6(t) =1 for 0 <t <1 and d(t) =t for t > 1. Denoting
A(t) = 64 @t) e MWD B(t) = nM/452(4)|U (1) /V2
we can write for € > 0

(6) P[ sup Ve M |Qa(t)] > ] <P[ sup A(t)- sup B*(t) >e].

te(0,00] t€(0,00] t€[0,00]

If —U(t) < 0then A(t) < §*(t) e * < K, for some K; > 0 independent of ¢ and
n. If —U(t) > 0 then A(t) < 6*(t) e M= V®) = §4(t)(1 +t/(W +a))~ U+, which is
bounded by 1 on [0, 1]; function t*(1 4 ¢/(W +a))~U*+7) t > 0, achieves (assuming
I+ r > 4) its maximum at ¢t = 4(W + a)/(I + r — 4) acquiring the value

W +a 4 4 —+n) a. s 44 4
4— 14+ —— — —e .
(I+T—4> ( +I—|—7”—4> n—00 )\46

Thus we have proved existence of constant K > max(K7,1,4*(Ae)™*) which satis-
fies Plsup;epg,o0) A(t) > K] — 0 as n — oo,
The process B(t) can be treated similarly as in (3), (4). We have

B(1)| = %W w20 (50 -3 00 @) <
(g ) e

hence P[sup,¢(g o] B*(t) > €] = 0 as n — oc.
Returning to (6) we have sup,cg o Vne 2 Qq(t) — 0 in probability. Therefore

both (5) and —/ne~* U(t) converge to the process —Z (according to Lemma),
with the same distribution as process Z. O
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