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WEAK ASYMPTOTICS OF THE BAYES ESTIMATOR
OF THE RELIABILITY FUNCTION
IN THE KOZIOL-GREEN MODEL

MICHAL FRIESL

Abstract. The Bayesian estimator (assuming conjugate prior density) of the
reliability function in the Koziol-Green model with exponential distribution is
considered, and the weak convergence of the estimator process to the Gaussian
process in C[0,∞] is proved.

1. Introduction

We are dealing with the Koziol-Green model of random censorship with an expo-
nential distribution, the model, which is described in many reliability and survival
data literature. We continue the works [3] and [4], where Bayesian estimators and
above all their asymptotic properties and Bayesian risk are studied. [6] deals with
the asymptotic properties of the maximum likelihood estimator, in [5] a test of fit
with the Koziol-Green model is given. A review of models and methods of estimation
is found in [7].

Let us have two independent random samples: X1, X2, . . . , Xn (failure times) dis-
tributed Exp(λ) (λ > 0), the exponential distribution with the reliability function

R(t) = e−λt, t ≥ 0,

and T1, T2, . . . , Tn (time censors) distributed Exp(λγ) (γ > 0). The reliability
function of T equals Rγ and satisfies thus the assumption of the Koziol-Green
model — to be a power of that of X. Instead of γ we can consider the parameter
p = (1 + γ)−1.

Due to the censoring by Tj ’s, the information available is fully contained in

Wj = min(Xj , Tj) and Ij = χ[Xj≤Tj ].
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If we denote the total time of an experiment and the number of uncensored items
by

W =
n∑
j=1

Wj and I =
n∑
j=1

Ij ,

the likelihood function for the parameters of the model, λ and γ, can be written as

L(λ, γ;W, I) = λn e−λ(1+γ)W γn−I , λ > 0, γ > 0.

We choose a prior density

ka,r,s(λ, γ) =
ar+s

Γ(r)Γ(s)
λr+s−1 e−λ(1+γ) γs−1, λ, γ > 0,

from the natural conjugate system for L, K = {ka,r,s, a, r, s > 0}. Then the Baye-
sian estimators of λ and R(t) are

λ̂ =
I + r

W + a
and R̂(t) =

(
W + a

W + a+ t

)I+r
,

respectively.
Given λ, γ, the convergences

λ̂
a. s.−−−−→
n→∞

λ,
√
n(λ̂− λ)

D−−−−→
n→∞

N(0, λ2/p)

and

(1)
√
n
(
R̂(1)−R(1)

)
D−−−−→

n→∞
N
(
0, (R(1) lnR(1))2/p

)
.

are proved in [4]. In this paper we will consider R̂(t) and R(t) as the trajectories of
continuous processes R̂ and R and extend (1) to the process

√
n(R̂−R).

2. Weak convergence of R̂

Lemma. Let U(t) = (I + r) ln(1 + t/(a+W ))− λt. Then

(2)
√
n e−λt U(t)

D−−−−→
n→∞

Z(t) in C([0,∞]),

where Z is a zero mean Gaussian process with cov(Z(s), Z(t)) = st e−λ(s+t) λ2/p.

Proof. We use Taylor expansion of ln(1 + x) at x = 0 to express

ln

(
1 +

t

W + a

)
=

t

W + a
+Q1(t),

where

(3) Q1(t) = − 1
2(1 + ξ)2

(
t

W + a

)2
for some ξ(t) ∈ [0, t/(W + a)].
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Since

(4) |
√
n e−λt(I + r)Q1(t)| ≤

1
2
t2 e−λt

(I + r)
√
n

(W + a)2
≤ K (I + r)

√
n

(W + a)2
−−−−→
n→∞

0 a. s.,

where K > 0 is a constant depending on λ only, both

U ′(t) =
√
n e−λt

(
I + r

W + a
t− λt

)
= t e−λt

√
n

(
I + r

W + a
− λ
)

and
√
n e−λt U(t) = U ′(t) +

√
n e−λt(I + r)Q1(t) converge to equally distributed

processes.
We know that

√
n[(I + r)/(W + a)− λ]→ N(0, λ2/p) in distribution as n→∞

and hence for every t1, t2, . . . , tk > 0 finite-dimensional distributions

(U ′(t1), . . . , U
′(tk))

D−−−−→
n→∞

Nk(0, var(Z(t1), . . . , Z(tk))).

Let ε > 0 be given.

P[ sup
|s−t|≤δ

|U ′(t)− U ′(s)| > ε] = P[ sup
|s−t|≤δ

|t e−λt−s e−λs |
√
n

∣∣∣∣ I + r

W + a
− λ
∣∣∣∣ > ε] ≤

≤ P[δ
√
n

∣∣∣∣ I + r

W + a
− λ

∣∣∣∣ > ε] −−−−→
n→∞

2Φ

(
−ε

δλ/
√
p

)
,

where Φ is the distribution function of N(0, 1). We can conclude that

lim
δ→0+

lim sup
n→∞

P[ sup
|s−t|≤δ

|U ′(t)− U ′(s)| > ε] = 0

(Stone’s tightness condition). Thus we have the convergence (2) in C([0, T ]) for
every T > 0 (e. g. [8], Theorem III.5.7, or [1], Chapter 8). The extension to C([0,∞])
can be made through the condition on tightness at ∞ (based on [1], Theorem 4.2,
an example of application [2], Theorem 6.2.1) which reads

lim
s→∞

lim sup
n→∞

P[sup
t≥s
|U ′(t)− U ′(s)| > ε] = 0 for every ε > 0,

and this is satisfied here since

P[sup
t≥s
|t e−λt−s e−λs |

√
n

∣∣∣∣ I + r

W + a
− λ

∣∣∣∣ > ε] ≤

≤ P[s e−λs
√
n

∣∣∣∣ I + r

W + a
− λ
∣∣∣∣ > ε] −−−−→

n→∞
2Φ

(
−ε

s e−λs λ/
√
p

)
,

assuming s > 1/λ. �

Proposition. For the Bayesian estimator R̂(t) = ( W+a
W+a+t )

I+r of the reliability
function R(t) = e−λt we have

√
n(R̂−R)

D−−−−→
n→∞

Z in C([0,∞]),

where Z is a zero mean Gaussian process with cov(Z(s), Z(t)) = st e−λ(s+t) λ2/p.
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Proof. Using Taylor expansion of ex at x = 0 we obtain

(5)
√
n(R̂(t)−R(t)) =

√
n e−λt(e−U(t)−1) =

√
n e−λt(1− U(t) +Q2(t)− 1),

where

Q2(t) = eξ(t) U2(t)/2 for some ξ(t) between 0 and −U(t).

Let δ(t) = 1 for 0 ≤ t ≤ 1 and δ(t) = t for t ≥ 1. Denoting

A(t) = δ4(t) e−λt+ξ(t), B(t) = n1/4δ−2(t)|U(t)|/
√

2

we can write for ε > 0

(6) P[ sup
t∈[0,∞]

√
n e−λt |Q2(t)| > ε] ≤ P[ sup

t∈[0,∞]
A(t) · sup

t∈[0,∞]
B2(t) > ε].

If −U(t) < 0 then A(t) ≤ δ4(t) e−λt ≤ K1, for some K1 > 0 independent of t and
n. If −U(t) > 0 then A(t) ≤ δ4(t) e−λt−U(t) = δ4(t)(1 + t/(W + a))−(I+r), which is
bounded by 1 on [0, 1]; function t4(1 + t/(W + a))−(I+r), t > 0, achieves (assuming
I + r > 4) its maximum at t = 4(W + a)/(I + r − 4) acquiring the value(

4
W + a

I + r − 4

)4(
1 +

4
I + r − 4

)−(I+r)
a. s.−−−−→
n→∞

44

λ4
e−4 .

Thus we have proved existence of constant K > max(K1, 1, 44(λ e)−4) which satis-
fies P[supt∈[0,∞]A(t) > K]→ 0 as n→∞.

The process B(t) can be treated similarly as in (3), (4). We have

|B(t)| = 1√
2
n1/4

∣∣∣∣tδ−2(t)( I + r

W + a
− λ
)

+ δ−2(t)(I + r)Q1(t)

∣∣∣∣ ≤
≤ 1√

2
n−1/4

(√
n

∣∣∣∣ I + r

W + a
− λ
∣∣∣∣+

(I + r)
√
n

2(W + a)2

)
P−−−−→

n→∞
0,

hence P[supt∈[0,∞]B
2(t) > ε]→ 0 as n→∞.

Returning to (6) we have supt∈[0,∞]
√
n e−λtQ2(t)→ 0 in probability. Therefore

both (5) and −
√
n e−λt U(t) converge to the process −Z (according to Lemma),

with the same distribution as process Z. �
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